Theory of Bubbles in the ISM

Jane Arthur

Centro de Radioastronomía y Astrofísica Universidad Nacional Autónoma de México Campus Morelia

Local Bubble and Beyond II, Philadelphia: April 2008

- ► Evolution in uniform media
- HII regions
- Stellar wind bubbles
- Supernova remnants

HII Regions

- ▶ Parameters: n₀, S_∗, c_{II}
- Expansion rate: $R_i \propto t^{4/7}$
- ▶ Gas temperature constant: T ~ 10⁴ K
- Ionized gas density uniform

Stellar wind bubbles

- ▶ Parameters: n₀, L_w
- ► Expansion rate: $R \propto (L_w/n_0)^{1/5} t^{3/5}$
- Two-shock pattern
- ▶ Hot bubble of shocked stellar wind $T \propto V_w^2$
- "Cold" thin shell of swept-up ISM

Supernova Remnants

- ► Parameters: n_0 , M_{ej} , E_0
- Different evolutionary stages depending on
 - 1. Ratio of swept-up mass to ejecta mass
 - 2. Radiative cooling

Refs: [Dyson, Arthur & Hartquist 2002]

Rogues' Gallery: HII Regions

Refs: [Trifid nebula in [OIII] (blue), $H\alpha$ (green) and [NII] (red): Hester (Palomar image)]

Rogues' Gallery: HII Region plus Stellar Wind

Refs: [Orion Nebula in diffuse, soft X-rays: Güdel et al. 2008]

Rogues' Gallery: Wolf-Rayet Bubbles

Refs: [[OIII] and $H\alpha$ image of RCW58: Gruendl (Gallery); [OIII] and XMM-Newton X-Ray image of S308: Chu et al. 2003]

Rogues' Gallery: Supernova Remnants

Refs: [Chandra image of Kesteven 79: Sun et al. 2004]

Modifications to Classical Models

- Non-uniform density
- Variations in the source
- Extra physical processes

Modifications: Density Gradients and Stellar Motion

- Colour plot pressure
- Greyscale ionized density
- Left panel after 20,000 yrs
- Right panel after 40,000 yrs

Modifications: Density Gradients

Refs: [Exponential density gradient: Arthur & Hoare 2006]

Modifications: Stellar Motion

Refs: [Star moving at 10 km s⁻¹: Arthur & Hoare 2006]

Modifications: HII Regions in Turbulent Media

Refs: [Synthetic [OIII], $H\alpha$ and [NII] emission-line image from a 512³ numerical simulation: Mellema, Henney, Arthur & Vázquez-Semadeni 2009]

Refs: [Stellar evolution with rotation, $60M_{\odot}$: Meynet & Maeder 2003, 2005] [Kudritzki 1989]

Refs: [Smith et al 2002; Starburst 99: Leitherer et al.]

Key: $[60M_{\odot}]$ model, Main Sequence Stage] [Top: (cyan) neutral density, (yellow) ionized density] [Bottom: temperature]

Key: $[60M_{\odot} \text{ model}, LBV \text{ Stage}]$ [Top: density] [Bottom: temperature]

Key: $[60M_{\odot} \text{ model}, \text{Wolf-Rayet Stage}]$ [Top: density] [Bottom: temperature]

Source variations

Refs: [RCW 118: Vásquez et al. 2005]

Source variations: Generate instabilities in CSM

 $\hbox{Key:} \quad \hbox{[$40$$$M$_{\odot}$ star model: 5.624×10^6 yrs]} \quad \hbox{[$Left panel: Density]} \quad \hbox{[$Right panel: temperature]}$

Source variations: Generate instabilities in CSM

 $\hbox{Key:} \quad \hbox{[40M$_{\odot}$ star model: 5.634×10^6 yrs]} \quad \hbox{[$Left panel: Density]} \quad \hbox{[$Right panel: temperature]}$

Source variations

Modifications: Extra processes

- Thermal conduction
- Mass loading
- Magnetic fields

Modifications: Extra processes – Mass Loading

Refs: [Bowshocks form at the interaction zone between photoevaporated material from the proplyds and the fast stellar wind from the main ionizing star of the Orion Nebula: O'Dell et al.]

Modifications: Conduction and Mass Loading

Key: [Top panel: Without mass loading] [Bottom panel: With mass loading] [Yellow: Without thermal conduction; Cyan: With thermal conduction]

Modifications: Conduction and Mass Loading

Key: [Top panel: Without mass loading] [Bottom panel: With mass loading] [Yellow: Without thermal conduction; Cyan: With thermal conduction]

Modifications: conduction

Thermal conduction has been suggested as an explanation for uniform temperatures across mixed morphology supernova remnants.

Modifications: Extra processes, mass loading

Refs: [Dyson et al. 2002]

Modifications: Magnetic fields

- Inhibit thermal conduction
- ► Weakly magnetized wind → aspherical bubble
- Affect SNR expansion at late times.

Uniform Density MHD HII Regions

Refs: [Henney, Arthur, de Colle, Mellema 2008]

Uniform Density MHD HII Regions

Refs: [Henney, Arthur, de Colle, Mellema 2008]

Summary

- Radiation-hydrodynamic modeling shows how different structures form and evolve around massive stars.
- Bubble size and amount of energy imparted to interstellar medium depend on processes taken into account.
- X-ray observations show that simple analytical models are inadequate to explain the observed emission.
- What is the magnetic field configuration and what role does it play?